9 research outputs found

    Saturn's north polar vortex structure extracted from cloud images by the optical flow method

    Get PDF
    The paper presents velocity fields with ~3‐km spatial resolution of Saturn's north polar vortex (NPV) retrieved using the optical flow method from a sequence of polar‐projected cloud images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft. The fields of the velocity magnitude, velocity variation, relative vorticity, divergence, and second invariant are determined to characterize the flow structures of the inner core of the NPV. The mean zonal and mean meridional velocity profiles of the NPV are compared with previous measurements. We also describe the relevant details of application of the optical flow method to planetary cloud‐tracking wind measurements. The mean zonal velocity profile is consistent with the previous measurements using correlation image velocimetry methods. The small but significant meridional velocity corresponds to outwardly spiraling streams observed in the region near the north pole (NP). The concentrated vorticity and second invariant within 1° planetographic latitude of the NP indicate strong rotational motion of the fluid. An analysis is presented to explore a possible physical origin of the observed spiraling node at the NP

    Camilla: A Centaur reconnaissance and impact mission concept

    Get PDF
    Centaurs, minor planets with a semi-major axis between the orbits of Jupiter and Neptune (5–30 AU), are thought to be among the most diverse small bodies in the solar system. These important targets for future missions may have recently been Kuiper Belt Objects (KBOs), which are thought to be chemically and physically primitive remnants of the early solar system. While the Kuiper Belt spans distances of 30–50 AU, making direct observations difficult, Centaurs' proximity to the Earth and Sun make them more accessible targets for robotic missions. Thus, we outline a mission concept designed to reconnoiter 10199 Chariklo, the largest Centaur and smallest ringed body yet discovered. Named for a legendary Centaur tamer, the conceptual Camilla mission is designed to fit under the cost cap of the National Aeronautics and Space Administration (NASA) New Frontiers program, leveraging a conservative payload to support a foundational scientific investigation to these primitive bodies. Specifically, the single flyby encounter utilizes a combined high-resolution camera/VIS-IR mapping spectrometer, a sub-mm point spectrometer, and a UV mapping spectrometer. In addition, the mission concept utilizes a kinetic impactor, which would provide the first opportunity to sample the composition of potentially primitive subsurface material beyond Saturn, thus providing key insights into solar system origins. Such a flyby of the Chariklo system would provide a linchpin in the understanding of small body composition, evolution, and transport of materials in the solar system

    Convective storms in closed cyclones in Jupiter's South Temperate Belt: (I) observations

    Get PDF
    On May 31, 2020 a short-lived convective storm appeared in one of the small cyclones of Jupiter's South Temperate Belt (STB) at planetographic latitude 30.8S. The outbreak was captured by amateur astronomer Clyde Foster in methane-band images, became widely known as Clyde's Spot, and was imaged at very high resolution by the Junocam instrument on board the Juno mission 2.5 days later. Junocam images showed a white two-lobed cyclonic system with high clouds observed in the methane-band at 890 nm. The storm evolved over a few days to become a dark feature that showed turbulence for months, presented oscillations in its drift rate, and slowly expanded, first into a Folded Filamentary Region (FFR), and later into a turbulent segment of the STB over a timescale of one year. On August 7, 2021, a new storm strikingly similar to Clyde's Spot erupted in a cyclone of the STB. The new storm exhibited first a similar transformation into a turbulent dark feature, and later transformed into a dark cyclone fully formed by January 2022. We compare the evolution into a FFR of Clyde's Spot with the formation of a FFR observed by Voyager 2 in 1979 in the South South Temperate Belt (SSTB) after a convective outburst in a cyclone that also developed a two-lobed shape. We also discuss the contemporaneous evolution of an additional cyclone of the STB, which was similar to the one were Clyde's Spot developed. This cyclone did not exhibit visible internal convective activity, and transformed from pale white in 2019, with low contrast with the environment, to dark red in 2020, and thus, was very similar to the outcome of the second storm. This cyclone became bright again in 2021 after interacting with Oval BA. We present observations of these phenomena obtained by amateur astronomers, ground-based telescopes, Hubble Space Telescope and Junocam. This study reveals that short-lived small storms that are active for only a few days can produce complex longterm changes that extend over much larger areas than those initially covered by the storms. In a second paper [In tilde urrigarro et al., 2022] we use the EPIC numerical model to simulate these storms and study moist convection in closed cyclones.We are very thankful to the large community of amateur observers operating small telescopes that submit their Jupiter observations to databases such as PVOL and ALPO-Japan. We are also grateful to two anonymous reviewers for their comments that improved the clarity of this paper. This work has been supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/and by Grupos Gobierno Vasco IT1366-19. PI acknowledges a PhD scholarship from Gobierno Vasco. GSO and TM were supported by NASA with funds distributed to the Jet Propulsion Laboratory, California Institute of Technology under contract 80NM0018D0004. C. J. Hansen was sup-ported by funds from NASA, USA to the Juno mission via the Planetary Science Institute. IOE was supported by a contract funded by Europlanet 2024 RI to navigate Junocam images, now available as maps in PVOL at http://pvol2.ehu.eus. Europlanet 2024 RI has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 871149. G.S. Orton, S. R. Brueshaber, T. W. Momary, K. H. Baines and E. K. Dahl were visiting Astronomers at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract 80HQTR19D0030 with the National Aeronautics and Space Administration. In addition, support from NASA Juno Participating Scientist award 80NSSC19K1265 was provided to M.H. Wong. This work has used data acquired from the NASA/ESA Hubble Space Telescope (HST) , which is operated by the Association of 807 Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These HST observations are associated with several HST observing programs: GO/DD 14661 (PI: M.H. Wong) , GO/DD 15665 (PI: I. de Pater) , GO/DD 15159 (PI: M. H. Wong) , GO/DD 15502 (PI: A. Simon) , GO/DD 14661 (PI: M. H. Wong) , GO/DD 16074 (PI: M.H. Wong) , GO/DD 16053 (PI: I. de Pater) , GO/DD 15929 (PI: A. Simon) , GO/DD 16269 (PI: A. Simon) . PlanetCam observations were collected at the Centro Astronomico Hispanico en Andalucia (CAHA) , operated jointly by the Instituto de Astrofisica de Andalucia (CSIC) and the Andalusian Universities (Junta de Andalucia) . This work was enabled by the location of the IRTF and Gemini North telescopes within the Mauakea Science Reserve, adjacent to the summit of Maunakea. We are grateful for the privilege of observing Kaawela (Jupiter) from a place that is unique in both its astronomical quality and its cultural signifi-cance. This research has made use of the USGS Integrated Software for Imagers and Spectrometers (ISIS) . Voyager 2 images were accessed through The PDS Ring-Moon Systems Nodes OPUS search service

    New Frontiers-class Uranus Orbiter: Exploring the feasibility of achieving multidisciplinary science with a mid-scale mission

    Get PDF
    n/

    Moist Convection in the Giant Planet Atmospheres

    No full text
    The outer planets of our Solar System display a myriad of interesting cloud features, of different colors and sizes. The differences between the types of observed clouds suggest a complex interplay between the dynamics and chemistry at play in these atmospheres. Particularly, the stark difference between the banded structures of Jupiter and Saturn vs. the sporadic clouds on the ice giants highlights the varieties in dynamic, chemical and thermal processes that shape these atmospheres. Since the early explorations of these planets by spacecrafts, such as Voyager and Voyager 2, there are many outstanding questions about the long-term stability of the observed features. One hypothesis is that the internal heat generated during the formation of these planets is transported to the upper atmosphere through latent heat release from convecting clouds (i.e., moist convection). In this review, we present evidence of moist convective activity in the gas giant atmospheres of our Solar System from remote sensing data, both from ground- and space-based observations. We detail the processes that drive moist convective activity, both in terms of the dynamics as well as the microphysical processes that shape the resulting clouds. Finally, we also discuss the effects of moist convection on shaping the large-scale dynamics (such as jet structures on these planets)

    Jupiter’s overturning circulation: Breaking waves take the place of solid boundaries

    No full text
    Cloud-tracked wind observations document the role of eddies in putting momentum into the zonal jets. Chemical tracers, lightning, clouds, and temperature anomalies document the rising and sinking in the belts and zones, but questions remain about what drives the flow between the belts and zones. We suggest an additional role for the eddies, which is to generate waves that propagate both up and down from the cloud layer. When the waves break they deposit momentum and thereby replace the friction forces at solid boundaries that enable overturning circulations on terrestrial planets. By depositing momentum of one sign within the cloud layer and momentum of the opposite sign above and below the clouds, the eddies maintain all components of the circulation, including the stacked, oppositely rotating cells between each belt-zone pair, and the zonal jets themselves.Plain Language SummaryThe dark belts and bright zones that circle the planet at constant latitude, along with the jet streams on the belt-zone boundaries, are the iconic dynamical features of Jupiter's atmosphere. But the circulation cells with rising, sinking, and cross-latitude motion are just as important because they maintain the storms and turbulent eddies. Voyager and Cassini have shown that the turbulent eddies put energy into the jet streams. We argue that the eddies also put energy into the circulation cells. They do this by generating waves that break as they propagate above and below the clouds. The breaking waves provide the essential forces that replace those that occur on planets with solid boundaries.</div

    New Frontiers Titan Orbiter

    Get PDF
    International audienceAs one of two planetary objects (other than Earth) that have solid surfaces, thick atmospheres, and astrobiological significance, Titan, like Mars, merits ongoing study with multiple spacecraft. We propose that a Titan orbiter dedicated to geophysics, geology, and atmospheric science be added to the New Frontiers menu for the coming decade

    Exploration of the Ice Giant Systems: A White Paper for NASA's Planetary Science and Astrobiology Decadal Survey 2023-2032

    No full text
    Ice giants are the only unexplored class of planet in our Solar System. Much that we currently know about these systems challenges our understanding of how planets, rings, satellites, and magnetospheres form and evolve. We assert that an ice giant Flagship mission with an atmospheric probe should be a priority for the decade 2023-2032
    corecore